Immensely powerful 'magnetar' is emitting wobbly radio signals in our galaxy — and scientists can't explain them

A magnetar that “woke up” in 2018 after years of radio silence emitted strange, wobbly radio signals — and scientists cannot explain them, new studies show. The findings suggest that the universe’s most powerful magnets are even weirder than we initially realized.

Magnetars are a rare, juvenile class of super-dense collapsed stars, known as neutron stars, with supercharged magnetic fields trillions of times greater than Earth’s magnetic field. Magnetars are most likely birthed by supernovas but can also be created by neutron star collisions. The energy from these cosmic events makes magnetars some of the fastest-spinning objects ever discovered. But eventually, they lose energy and transition into regular neutron stars as their spin rate slows. Only around 30 magnetars have been detected to date.

Some magnetars occasionally explode violently as their complex magnetic fields unwind and snap, causing them to shoot out vast amounts of radiation into space in the form of X-rays, gamma rays and, most commonly, radio pulses. These outbursts, which can explode with the force of millions of suns, enable astronomers to spot the magnetars. But after several years, these outbursts diminish, and the rapidly spinning stars disappear from view once more.

In December 2018, a city-size magnetar named XTE J1810-197, which was first discovered in 2003, reappeared to astronomers thanks to one of these outbursts after more than a decade of radio silence. Ever since, the magnetar, which is located around 8,000 light-years from Earth, has continued to spit radio pulses toward our planet, enabling researchers to monitor the celestial object with some of the world’s largest radio telescopes.

In a pair of new studies, which were both published April 8 in the journal Nature Astronomy, researchers analyzed the radio pulses given off by XTE J1810-197 and discovered a weird “wobbling” in these signals. Further analysis revealed that these fluctuations could not be explained by any known magnetar behavior, suggesting something completely new was at play.

immensely powerful 'magnetar' is emitting wobbly radio signals in our galaxy — and scientists can't explain them

Magnetars eventually turn into regular neutron stars as they start to spin slower. (Image credit: Getty Images)

“Our findings demonstrate that exotic physical processes are involved in the production of the radio waves we can detect,” Patrick Weltevrede, an astrophysicist at the University of Manchester in the U.K. and co-author of both new studies, said in a statement. But at present, the team cannot explain what these novel processes are.

Initially, researchers assumed that the signal’s wobble was the result of “free precession,” where slight asymmetries in the magnetar’s spherical shape cause it to wobble like a spinning top. However, around three months after XTE J1810-197 reawakened, the wobbling suddenly stopped even though the signals did not, meaning that either the magnetar changed shape (which is very unlikely, the researchers say) or free precession was not the cause of the signal in the first place.

immensely powerful 'magnetar' is emitting wobbly radio signals in our galaxy — and scientists can't explain them

Researchers used observations from the Effelsberg telescope in Germany (left), the Lovell telescope in the UK (middle), and Murriyang telescope in Australia (right) to study XTE J1810-197. (Image credit: Norbert Junkes/Mike Peel/Marcus Lower)

Instead, researchers now believe that a region of undulating plasma near one of XTE J1810-197’s magnetic poles acted as a “polarizing filter,” which wobbled the radio pulses as they were emitted from the baby neutron star. But “how exactly the plasma is doing this is still to be determined,” Marcus Lower, an astrophysicist with the Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Australia and lead author of one of the studies, said in the statement.

Researchers will now search for these wobbles in signals from other radio-emitting magnetars to see if they can get to the bottom of the mystery. They hope that by solving this puzzle they will be able to better understand how neutron stars form and how matter behaves at such incredibly high densities.

“Like cats, it’s impossible to predict what a magnetar will do next,” three of the researchers wrote in an article published on The Conversation. “But with current and future upgrades to telescopes, we are now more ready than ever to pounce the next time one decides to awaken.”

News Related

OTHER NEWS

FA confident that Man Utd starlet will pick England over Ghana

Kobbie Mainoo made his first start for Man Utd at Everton (Photo: Getty) The Football Association are reportedly confident that Manchester United starlet Kobbie Mainoo will choose to represent England ... Read more »

World Darts Championship draw throws up tricky tests for big names

Michael Smith will begin the defence of his world title on the opening night (Picture: Getty Images) The 2024 World Darts Championship is less than three weeks away and the ... Read more »

Pioneering flight to use repurposed cooking oil to cross Atlantic

For the first time a long haul commercial aircraft is flying across the Atlantic using 100% sustainable aviation fuel (SAF). A long haul commercial flight is flying to the US ... Read more »

King meets world business and finance figures at Buckingham Palace

The King has met business and finance leaders from across the world at a Buckingham Palace reception to mark the conclusion of the UK’s Global Investment Summit. Charles was introduced ... Read more »

What Lou Holtz thinks of Ohio State's loss to Michigan: 'They aren't real happy'

After Ohio State’s 30-24 loss to Michigan Saturday, many college football fans were wondering where Lou Holtz was. In his postgame interview after the Buckeyes beat Notre Dame 17-14 in ... Read more »

Darius Slay wouldn't have minded being penalized on controversial no-call

Darius Slay wouldn’t have minded being penalized on controversial no-call No matter which team you were rooting for on Sunday, we can all agree that the officiating job performed by ... Read more »

Mac Jones discusses Patriots future after latest benching

New England Patriots quarterback Mac Jones (10) Quarterback Mac Jones remains committed to finding success with the New England Patriots even though his future is up in the air following ... Read more »
Top List in the World